skip to main content


Search for: All records

Creators/Authors contains: "Poynton, Helen C."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available November 1, 2024
  2. After release into the aquatic environment, engineered nanomaterials (ENMs) undergo complex chemical and physical transformations that alter their environmental fate and toxicity to aquatic organisms. Hyalella azteca are sediment-dwelling amphipods predicted to have a high exposure level to ENMs and have previously shown to be highly sensitive to ZnO nanoparticles (NPs). To investigate the impacts of environmentally transformed ZnO NPs and determine the route of uptake for these particles, we exposed H. azteca to ZnSO 4 , ZnO NPs, and environmental aged ZnO NPs which resulted in three types of particles: 30 nm ZnO–Zn 3 (PO 4 ) 2 core–shell structures (p8-ZnO NPs), micron scale hopeite-like phase Zn 3 (PO 4 ) 2 ·4H 2 O (p6-ZnO NPs), and ZnS nano-clusters (s-ZnO NPs). Treatments included freshwater, saltwater (3 ppt), and the presence of sediment, with a final treatment where animals were contained within mesh baskets to prevent burrowing in the sediment. Dissolution was close to 100% for the pristine ZnO NPs and phosphate transformed NPs, while s-ZnO NPs resulted in only 20% dissolution in the water only exposures. In the freshwater exposure, the pristine and phosphate transformed ZnO NPs were more toxic (LC 50 values 0.11–0.18 mg L −1 ) than ZnSO 4 (LC 50 = 0.26 mg L −1 ) and the s-ZnO NPs (LC 50 = 0.29 mg L −1 ). Saltwater treatments reduced the toxicity of ZnSO 4 and all the ZnO NPs. In the presence of sediment, water column concentrations of Zn were reduced to 10% nominal concentrations and toxicity in the sediment with basket treatment was similarly reduced by a factor of 10. Toxicity was further reduced in the sediment only treatments where the sediments appeared to provide a refuge for H. azteca . In addition, particle specific differences in toxicity were less apparent in the presence of sediment. Bioaccumulation was similar across the different Zn exposures, but decreased with reduced toxicity in the saltwater and sediment treatments. Overall, the results suggest that H. azteca is exposed to ZnO NPs through the water column and NP transformations in the presence of phosphate do not reduce their toxicity. Sulfidized ZnO NPs have reduced toxicity, but their similar level of bioaccumulation in H. azteca suggests that trophic transfer of these particles will occur. 
    more » « less
  3. Abstract

    Organophosphate (OP) and carbamate (CM) insecticides are widely used in the United States and share the same mode of toxic action. Both classes are frequently documented in aquatic ecosystems, sometimes at levels that exceed aquatic life benchmarks. We previously identified a population of the nontarget amphipod,Hyalella azteca, thriving in an agricultural creek with high sediment levels of the OP chlorpyrifos, suggesting the population may have acquired genetic resistance to the pesticide. In the present study, we surveyed 17 populations ofH. aztecain California to screen for phenotypic resistance to chlorpyrifos as well as genetic signatures of resistance in the acetylcholinesterase (ace‐1) gene. We found no phenotypic chlorpyrifos resistance in populations from areas with little or no pesticide use. However, there was ~3‐ to 1,000‐fold resistance inH. aztecapopulations from agricultural and/or urban areas, with resistance levels in agriculture being far higher than urban areas due to greater ongoing use of OP and CM pesticides. In every case of resistance inH. azteca, we identified a glycine‐to‐serine amino acid substitution (G119S) that has been shown to confer OP and CM resistance in mosquitoes and has been associated with resistance in other insects. We found that the G119S mutation was always present in a heterozygous state.Further, we provide tentative evidence of anace‐1 gene duplication inH. aztecathat may play a role in chlorpyrifos resistance in some populations. The detection of a genetically based, adaptive OP and CM resistance in some of the same populations ofH. aztecapreviously shown to harbor a genetically based adaptive pyrethroid resistance indicates that these nontarget amphipod populations have become resistant to many of the insecticides now in common use. The terrestrial application of pesticides has provided strong selective pressures to drive evolution in a nontarget, aquatic species.

     
    more » « less